

The Easy-Radio (ER) ERx00TS Transmitter, ERx00RS Receiver and ERx00TRS transceiver incorporate 'Easy-Radio' technology to provide high performance, simple to use radio devices that can transfer data over a range of up to 250 metres Line Of Sight (LOS). Furthermore 'Easy-Radio' technology allows frequency, data rate and power output to be optimised for customer specific applications. The embedded software reduces design and development time significantly.

ER modules are available in two frequency versions: ER400 series (433-434MHz) & ER900 series (868/9MHz & 902-928MHz). For purposes in this document they will be referred to as ERx00.

2nd Generation Modules (please READ)

This Data Sheet covers the new hardware/firmware revisions of the Easy Radio TS, RS & TRS modules. Their Part numbers are the same as before with the addition of "-02" (eg. ER400TRS-02).

The "02" modules address issues that have been identified in previous hardware. The primary objectives for its development was to solve two main issues:

- Unintentional Loss of user configured settings:
 - The previously used micro-controller (μ C) was susceptible to EEPROM corruption when a 'brown-out' condition occurred. Particularly when power cycling the module. This had the effect of triggering the automatic *Reset to Default* behaviour of the module.
- Frequency Stability:
 - Previous data sheets clearly show a frequency tolerance of +-50ppm. Despite operating within this specification, over some batches of product this has caused some unreliable communication to occur, as frequencies have been too far away from each other. If you are having issues in this area, please contact us.
- Back Compatibility:
 - New Modules can be set to be compatible with any frequency variations in the past. Please contact technical for details.

What improvements are there in '02'?

- The μC has now been changed to one which also has a low-voltage brown-out-detect (BOD) circuit built in. Extensive testing has been done on this, and therefore power cycling techniques to conserve power are now easily achieved without the loss of programmed settings. The new μC also benefits from greater ROM size and peripheral features which means more functionality is being packed into the Easy Radio Modules.
- 2. The Crystal that controls the RF is now as low as +-10ppm, which guarantees consistent frequency stability over batches and over an extended temperature range of -40°C to +85°C.

Of course some specifications have been effected to allow these hardware changes, but we feel it has been a necessary move to improve the product. LPRS are committed to the continued development and enhancement of Easy Radio and enhancements may be made without prior notice. A list of development hardware and software known issues and changes are listed at the end of this document. Please always make sure you are reading the latest document for update information.

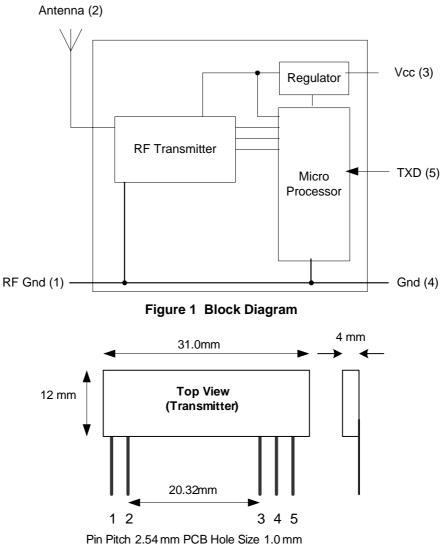
This data sheet describes the electrical and physical characteristics of the device. Operation of the Easy Radio software and Timing Specifications are described later in this document. Further information is available in the 'Easy-Radio Demonstration Kit & Programming Software' guide, which should be read in conjunction with this data sheet.

General Features

Crystal controlled synthesiser for frequency accuracy High sensitivity receiver - typically -103dBm @ 19.2 Kbps Up to 10mW Transmit Power (at 434MHz) Low operating Voltage - 3.3 Volts - Single Lithium Cell Low power consumption: Receiver - 19mA Transmitter – 23mA Frequency of operation

> Data Rate **Output Power**

User programmable:


New '02' Added Features

- User Customisable RS232 BAUD rate •
 - o Literally add any required BAUD rate in the new Easy Radio Evaluation Software and select your new BAUD using the new ER_CMD#U0 command. *
- FAST ACK feature •
 - o Reduce the time to issue 'ER' commands, using the HEX06 ASCII ACK character.
 - **Default Power Settings**
 - o Set your own power defaults for each channel using lowercase 'p' command.
- Customisable Data ID **
 - Set a 16-bit ID to prevent communication with other Easy Radio Users.
- Programmable Encryption **
 - Secure your data with a user defined 16-bit seed.
- User programmable frequencies
 - o Change the channel frequencies to personalised settings. (Via PC Software)
- DCS (Digital Channel Selection) **
 - o Prevent crosstalk between adjacent channels
- Repeater Mode **
 - Extend transmission range
- Note some BAUD rates may require two stop bits. (See Eval Software for details on specific BAUD) ** Available very soon. Commands will be published shortly

Applications

Handheld Terminals **Environmental Sense & Control** Vehicle to Base Station Data Transfer **Remote Data Acquisition** Electronic Point of Sale equipment

ERx00TS-02 Transmitter

Figure 2 Physical Dimensions

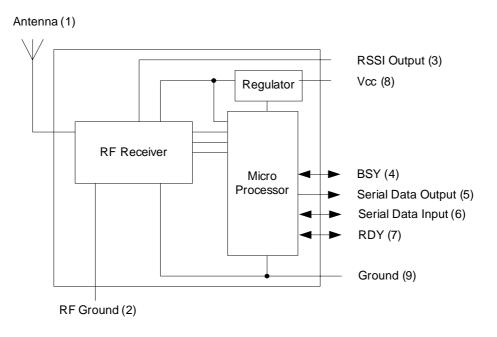
Pin Description

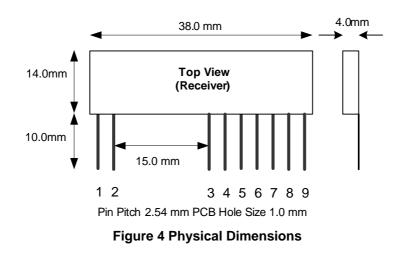
Pin No	Name	Description	Notes
1	RF Gnd	RF ground. Connect to antenna ground (coaxial cable screen braid) and local ground plane. Internally connected to Pin 4	
2	RF Out	50 Ohm RF output. Connect to suitable antenna	
3	Vcc	Positive supply pin. +3.3 to +5.5 Volts. This should be a 'clean' noise free supply with less than 25mV of ripple	
4	Gnd	Supply 0 Volt and Ground Plane	
5	TXD	Transmit Data Digital Input (SDI)	

- 1. The module operates internally from an on board 3.3 Volt low drop regulator.
- 2. TXD input will be correctly driven by logic operating at 5 Volts (CMOS & TTL logic levels). Input should not be driven by an analogue source.

ERx00RS Receiver

The ERx00RS-02 Receiver is a complete sub-system that combines a high performance low power RF receiver, a 'flash' programmable microcontroller and a voltage regulator (Figure 3). The microcontroller programmes the functions of the RF receiver and provides the interface to the host system via a data output. It also contains programmable EEPROM memory that holds configuration data for the various receiver operating modes. The microcontroller also relieves the host from the intensive demands of searching for signals within the noise, recovering the received data and then presenting it to the host. A Received Signal Strength Indicator output can be optionally used to measure received signal levels. The module connects to a 50 Ohm antenna such as a whip, helical or PCB loop.




Figure 3 Easy-Radio Receiver Block Diagram

The ERx00RS-02 will receive and decode any Easy-Radio transmission within range and on the same frequency and deliver clean RS232 data to the host system for further processing.

The Serial Data Output operates at programmable standard Baud Rates (default/typical 19,200Baud).

Key parameters (frequency, power output, serial baud rate etc.) of the module may be programmed using the Easy-Radio PC Software via SDI pin 6. (Easy Radio Configuration Command Set, later in this document)

Pin Out

Pin Description

Pin	Name	Description	Notes
No			
1	Antenna	50 Ohm RF input/output. Connect to suitable antenna.	
2	RF Ground	RF ground. Connect to antenna ground (coaxial cable screen braid) and local ground plane. Internally connected to other Ground pins.	
3	RSSI	Received Signal Strength Indication - Analogue	
4	BSY	Output (Low - Ready for data from Host) (High - Not Ready)	CTS function
5	Data Out	Received Data Output	SDO
6	Data In	ER command Input	SDI
7	RDY	Input (Low – Host Ready to receive data) (High – Not Ready)	RTS function
8	Vcc	Positive supply pin. +3.3 to +5.5 Volts. This should be a 'clean' noise free supply with less than 25mV of ripple.	
9	Ground	Connect to supply 0 Volt and ground plane	

Checklist

- 1. The module operates internally from an on board 3.3 Volt low drop regulator. The logic levels of the input/output pins are therefore between 0 Volt and 3.3 Volts. (See RS Performance Data).
- All digital inputs and outputs are intended for connection to low voltage logic devices. Do not connect any of the inputs or outputs directly to an RS232 port. The receiver module may be permanently damaged by the voltages (+/- 12V) present on RS232 signal lines. See Application Circuit (Figure 11) for typical connection to an RS232 port via MAX232 interface IC.
- 3. Outputs will drive logic operating at 5 Volts.
- 4. If in handshaking mode, pin (7) of the ERx00RS-02 module should be connected directly to GND for data to be delivered.

Application & Operation ERx00TS-02 & RS-02

Figure 5 shows a typical system block diagram comprising hosts (user's application) connected to Easy-Radio Transmitters and Receivers. Host (A) will be monitoring (collecting data) and Host (B) will be receiving and processing this data.

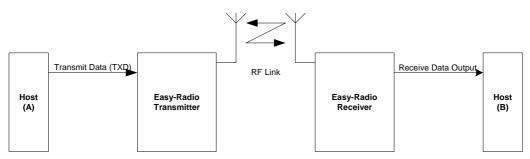
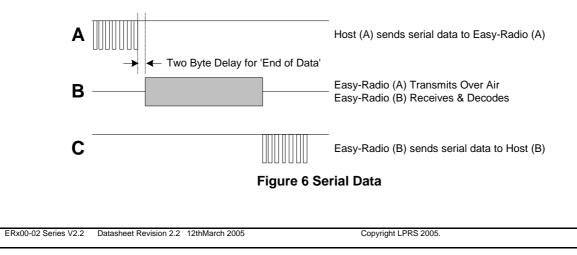
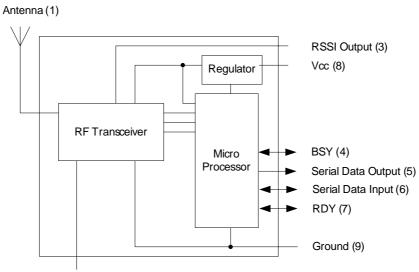


Figure 5 Typical System Block Diagram


The Host (A) should provide the serial data input (up to a maximum 180 characters per packet) to the Easy-Radio transmitter. The data should be sent in 'bursts' therefore allowing adequate time for transmission and reception over the RF link (See Figure 6). The receiver, upon reception and decoding of the RF transmission immediately sends serial data to the Host B.

Data is sent and received in standard 'RS232' serial format (logic level only) and there is no restriction on the characters that may be sent. (HEX 00 – FF)

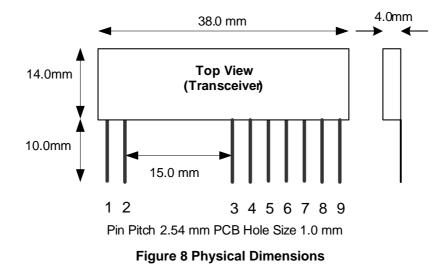
- A. Host (A) sends serial data to the Easy-Radio Transmitter (A). The data must be continuously streamed at the selected baud rate and it loads an internal transmit buffer until either it is full or a gap of two bytes is detected.
- B. After detecting either the 'End of Data' gap or the 'Buffer Full' condition the controller enables RF transmit and sends the data in the buffer using Manchester coding for efficient transmission across the RF link. Any Easy-Radio receivers within range that 'hear' the transmission will simultaneously decode the data and place it into their receive buffers.
- C. After checking the data for integrity, the Data within the receive buffer of Easy-Radio Receiver (B) is then sent continuously to the host at the selected baud rate.


There is no 'RF handshaking' provided at either the transmitter or receiver. The user should therefore ensure that sufficient time is allowed for the completion of transmission and reception of data. The Timing Specifications detail these requirements (see page 9). Transmitter Host (A) must allow time for the 'Over Air' transmission and for the receiving Host (B) to unload (and process) the data before sending any more new data. The receiver Host (B) must always be 'ready and waiting' for data to arrive. It should be possible to use fast response 'interrupts' without any loss of data.

With such a 'one-way' (simplex) system there is no confirmation of the satisfactory reception of the data and for added reliability it is recommended that the data be sent, perhaps, repetitively several times. For increased reliability the use of transceivers (which can acknowledge packet reception) is recommended. Easy-Radio services do not provide automatic acknowledgement (or re-tries) but these can be provided by the users application.

ERx00TRS-02 Transceiver Description

The Easy-Radio Transceiver is a complete sub-system that combines a high performance very low power RF transceiver, a microcontroller and a voltage regulator (Figure 7).



RF Ground (2)

Figure 7 Easy-Radio Transceiver Block Diagram

The Serial Data Input and Serial Data Output operate at the standard 19,200 Baud and the two handshake lines provide optional flow control to and from the host. The Easy-Radio Transceiver can accept and transmit up to 180 bytes of data, which it buffers internally before transmitting in an efficient over-air code format.

Any other Easy-Radio Transceiver within range that 'hears' the transmission will decode the message and place the recovered data within a receive buffer that can then be unloaded to the receiving host for processing and interpretation. Transmission and reception are bi-directional half duplex i.e. transmit OR receive but not simultaneously.

Pin Description

Pin No	Name	Description	Notes
1	Antenna	50 Ohm RF input/output. Connect to suitable antenna.	
2	RF Ground	RF ground. Connect to antenna ground (coaxial cable screen braid) and local ground plane. Internally connected to other Ground pins.	
3	RSSI	Received Signal Strength Indication	
4	Busy Output	Digital Output to indicate that transceiver is ready to receive serial data from host.	CTS function
5	Serial Data Out	Digital output for received data to host	
6	Serial Data In	Digital input for serial data to be transmitted	
7	Host Ready Input	Digital Input to indicate that Host is Ready to receive serial data from transceiver	RTS function
8	Vcc	Positive supply pin. +3.3 to +5.5 Volts. This should be a 'clean' noise free supply with less than 25mV of ripple.	
9	Ground	Connect to supply 0 Volt and ground plane	

Checklist

- 1. The module operates internally from an on board 3.3 Volt low drop regulator. The logic levels of the input/output pins are therefore between 0 Volt and 3.3 Volts. (See specifications/performance data).
- The serial inputs and outputs are intended for connection to a UART or similar low voltage logic device. Do not connect any of the inputs or outputs directly to an RS232 port. The transceiver module may be permanently damaged by the voltages (+/- 12V) present on RS232 signal lines. See Application Circuit (Figure 11) for typical connection to an RS232 port via MAX232 interface IC.
- 3. The 'Host Ready Input' should be tied to 0 Volt (Ground) if not used.
- 4. The 'Serial Data In' should be tied to Vcc if not used. (Receive mode only).
- 5. Outputs will drive logic operating at 5 Volts and inputs will be correctly driven by logic operating at 5 Volts (CMOS & TTL logic levels).

LPRS Data Sheet

Easy-Radio '02' (2nd Generation Modules) ER400TS Transmitter, ER400RS Receiver & ER400TRS Transceiver

Application & Operation ERx00TRS-02

Figure 9 shows a typical system block diagram comprising hosts (user's application) connected to Easy-Radio Transceivers. The hosts (A & B) will be monitoring (collecting data) and/or controlling (sending data) to some real world application.

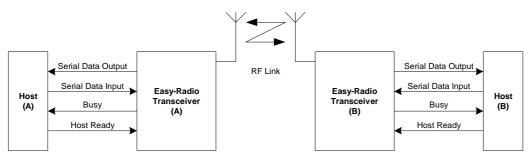


Figure 9 Typical System Block Diagram

The hosts provide serial data input and output lines and two 'handshaking' lines that control the flow of data to and from the Easy-Radio Transceivers. The 'Busy' output line, when active, indicates that the transceiver is undertaking an internal task and is not ready to receive serial data. The 'Host Ready' input is used to indicate that the host is ready to receive the data held in the buffer of the Easy-Radio Transceiver.

The host should check before sending data that the 'Busy' line is not high, as this would indicate that the transceiver is either transmitting or receiving data over the radio link. It should also pull the 'Host Ready' line low and check that no data appears on the Serial Data Output line.

Detailed operation of interfacing, handshaking (including timing) is described in the 'Easy-Radio Software Guide'.

Parameters	Min	Units	Notes
Host Serial Input/Output	2400, 4800, 9600, 19200, 38400 + Custom	baud	1
Host Character Format	1 Start, 8 Data, No Parity, 1 Stop	Bits	2 &2a
End of Data Delay	2 x BAUD BYTE Duration	mS	3
RF Transmit	13.2 + (n Bytes X 0.8)	mS	4
Buffer Size	1-180	Bytes	5

Timing Specifications - Applies to all Easy-Radio Modules.

- Data is inverted i.e. Start Bit is logic low. The inputs are intended for direct connection to a microcontroller UART or to RS232 inputs and outputs via an RS232 Level translator such as a Maxim MAX232 which invert the logic of the RS232 signals. This allows direct connection to, for example a PIC UART. The data rate is user programmable (Default 19200 baud) and may differ between individual units within a system. (See Application Circuit diagram for logic level to RS232 interface figure 11).
- 2. 1 start, 8 data, 1 stop = 10 bits @ 104uS/bit = 0.52mS/character at 19200 Baud. (Default)
- a. Some Custom BAUD rates require 2 stop bits, otherwise some characters may be lost.3. The 'End of Data' delay is fixed at twice the character time.
- 4. A fixed package overhead of 13.2mS is added to all packets.
- 5. The buffer size is limited to 180 bytes. Sending more than 180 bytes will cause loss of data.
 - a. CTS pin will go high 2 bytes before the buffer is full. This allows characters already sent to be accepted by the ER module.

Absolute Maximum Ratings ERx00TS-02, ERx00RS-02 and ERx00TRS-02

Operating Temperature Range	-40° C to +85° C (Commercial)
Storage Temperature Range	-40° C to +85° C
Vcc	- 0.3 to + 6.0 Volts
All Other Pins (N.B.)	- 0.3 to 3.3 Volts
Antenna	50V p-p @ < 10MHz

Performance Data: ERx00TS-02 Transmitter Supply +5.0 Volt ± 5%, Temperature 20° C

DC Parameters	Pin	Min	Typical	Max	Units	Notes
Supply Voltage (Vcc)	3	3.3	5.0	5.5	Volts	
Supply current	3		23		mA	1
Interface Levels						
Data Input Logic 1		2.0			Volts	
Data Input Logic 0				0.2	Volts	
Input Impedance			100		K Ohm	
RF Parameters	Pin	Min	Typical	Max	Units	Notes
Antenna Impedance	2		50		Ohms	
RF Frequency		433	434	434	MHz	See ER Configuration
		868	869	870	MHz	Command set
		902	915	928	MHz	
RF Power Output	2	-5	+10	+10	dBm	50 Ohm load
						(depends on frequency)
Frequency accuracy			±10		ppm	Overall
FM deviation			64		kHz	
Harmonics		-43			dB	Below fundamental
Data Rate		2.4	19.2	38.4	Kbps	Custom Over Air BAUD
			(Default)			rates can be set via
						software
Logic Timing	Pin	Min	Typical	Max	Units	Notes
Power Up Time			13		mS	2
Mechanical						
Size		31 >	(12 x 4	mm		
Pin Pitch			2.54		mm	Standard 0.1 Inch
Weight			2.5		gms	

- 1. Contact the Sales Office for details of special low power variants. RF power output can be programmed at the factory.
- 2. Time required to 'lock' synthesiser from power up.

Performance Data: ERx00RS-02 Receiver Supply +5.0 Volt ± 5%, Temperature 20° C

DC Parameters	Pin	Min	Typical	Max	Units	Notes
	-		5.0		<u> </u>	
Supply Voltage (Vcc)	8	3	5.0	5.5	Volts	
Receive supply current	8		19.5		mA	
Interface Levels						
Data Output Logic 1			3.1		Volts	10k load to +Vcc supply
Data Output Logic 0			0.1		Volts	10k load to +Vcc supply
Logic Output Current				25	mA	
Data Input Logic 1		2.0		3.6	Volts	
Data Input Logic 0				0.2	Volts	
Input Pull-ups			100		K Ohm	
Antenna Impedance	1		50		Ohms	
RF Frequency		433	434	434	MHz	See ER Configuration
		868	869	870	MHz	Command set
		902	915	928	MHz	
Receiver						
Receive Sensitivity		-99	-102	-105	dBm	$BER = 10^{-3}$
LO leakage			-60		dBm	Meets EN 300 220-3
Data Rate		2.4	19.2	38.4	Kbps	
RSSI Output	3	0		1.2	Volt	See Figure 10
Logic Timing	Pin	Min	Typical	Max	Units	Notes
Initial Power Up Time			7.5		mS	1,2
Mechanical						
Size		38 >	(14 x 4	mm	-1	
Pin Pitch			2.54		mm	Standard 0.1 Inches
Weight			3.5		gms	

- 1. When power is first applied to the module the processor retrieves 'calibration' data for the RF section that compensates for temperature and power supply voltage variations. The receiver will then be ready to receive. It would normally be left in this powered state ready to receive data.
- 2. Contact the Sales Office for special 'fast' versions that can incorporate internal 'duty cycling' to further reduce quiescent power consumption for battery powered applications. Also for variants in frequency etc.

Performance Data: ERx00TRS transceiver Supply +5.0 Volt ± 5%, Temperature 20° C

DC Parameters	Pin	Min	Typical	Max	Units	Notes
Supply Voltage (Vcc)	8	3.6	5.0	5.5	Volts	
Transmit supply current	8		23		mA	
Receive supply current	8		19.5		mA	
Interface Levels						
Data Output Logic 1			3.1		Volts	10k load to +Vcc supply
Data Output Logic 0			0.1		Volts	10k load to +Vcc supply
Logic Output Current				25	mA	
Data Input Logic 1		2.0			Volts	
Data Input Logic 0				0.2	Volts	
Input Pull-ups			100		K Ohm	1
RF Parameters	Pin	Min	Typical	Max	Units	Notes
Antenna Impedance	1		50		Ohms	
RF Frequency		433	434	434	MHz	See ER Configuration
		868	869	870	MHz	Command set
		902	915	928	MHz	
Transmitter						
RF Power Output	1	-5	+10	+10	dBm	50 Ohm load Depends on Frequency
Frequency accuracy			±10		ppm	Overall
FM deviation			64		kHz	
Harmonics			-25		dBc	
Over Air Data rate		2400	19200	38400	bps	Manchester Encoded
Receiver						
Receive Sensitivity		-99	-102	-105	dBm	$BER = 10^{-3}$
LO leakage			-60		dBm	Meets EN 300 220-3
Serial Data Rate		0.3	19.2	38.4	Kbps	Host interface. 6
RSSI Output	3	0		1.2	Volt	See Figure 10
Logic Timing	Pin	Min	Typical	Max	Units	Notes
Initial Power Up Time			13		mS	2,3
Mechanical						
Size		2 Q V	14 x 4	mm		
Pin Pitch		30 X	2.54	111111	mm	Standard 0.1 Inches
Weight			3.5		gms	

- 1. The 'Host Ready Input' and the 'Serial Data Input' have 'weak' internal pull-ups enabled. These inputs should not however be left 'floating' but should be tied to either Vcc or Ground 0 Volts.
- 2. When power is first applied to the module the processor retrieves 'calibration' data for the RF section that compensates for temperature and power supply voltage variations. The transceiver will then be ready to receive (default) or transmit. It would normally be left in this powered state ready to receive data.
- 3. During power up the Busy Output line goes high.

LPRS Data Sheet

Easy-Radio '02' (2nd Generation Modules) ER400TS Transmitter, ER400RS Receiver & ER400TRS Transceiver

Easy-Radio Configuration Command Set

The programming software sends 'Text Commands' to the modules and this action can be performed by terminal software or the host's Microcontroller using the following list of commands: Note that shaded items are new **02** commands only.

Command	Function	ER400	ER900	Notos
Command	Function	EK400	_ EK900	Notes
	RS232 Comm	nunication	Settings	
ER CMD#U0	Custom BAUD rate	300	300	Programmable via
		000		ER Windows Software
ER_CMD#U1	UART Data Rate	2400	2400	
ER_CMD#U2	-	4800	4800	
ER CMD#U3	-	9600	9600	
ER_CMD#U4	7	19200	19200	
ER_CMD#U5		38400	38400	
ER_CMD#U?	Get UART Value			The module replies echos with the UART value. Eg: ER_CMD#U2 No ACK is required.
ER_CMD#H1	Handshaking ON		l	Only effects RTS
ER CMD#H1	Handshaking OFF	OFF	OFF	Pin.
				1
ER CMD#I7	FAST ACK Enable			(Upper case i)
ER_CMD#I8	FAST ACK Disable	OFF	OFF	See notes on "FAST ACK" below.
	RF POV	VER Setti	ngs	
ER_CMD#P0	RF Power Output	1mW	0.0625mW	
ER_CMD#P1	Sets output power on	2mW	0.125mW	
ER_CMD#P2	a channel.	3mW	0.25mW	
ER_CMD#P3	Warning! This level	4mW	0.5mW	
ER_CMD#P4	will be set to the	5mW	0mW	
ER_CMD#P5	default setting when the frequency is	6mW	1mW	
ER_CMD#P6	- changed or reset via	7mW	2mW	
ER_CMD#P7	a Channel command.	8mW	3mW	
ER_CMD#P8		9mW	4mW	
ER_CMD#P9		10mW	5mW	
ER_CMD#P?	Get Power Value			The module replies echos with the power value. Eg: ER_CMD#P9 No ACK is required.
ER_CMD#p0	Set Default RF	1mW	0.0625mW	NOTE lower case 'p'
ER_CMD#p1	Power Output.	2mW	0.125mW	
ER_CMD#p2	This allows the host	3mW	0.25mW	
ER_CMD#p3	to set each channel to a different default	4mW	0.5mW	
ER_CMD#p4	power setting. (Ideal	5mW	0mW	
ER_CMD#p5	for automatic	6mW	1mW	
ER_CMD#p6	selection between	7mW	2mW	
ER_CMD#p7	- bands like 869 & 914	8mW	3mW	
ER_CMD#p8	- etc.)	9mW	4mW	
ER_CMD#p9		10mW	5mW	

Copyright LPRS 2005.

RF Channel Settings					
				1	
ER_CMD#C0	Channel 0	433.23 MHz	869.9MHz	All channels can now	
ER_CMD#C1	Channel 1	433.30 MHz	914.65MHz	be chosen in software.	
ER_CMD#C2	Channel 2	433.45 MHz	Not Set	Custom frequencies	
ER_CMD#C3	Channel 3	433.55 MHz	Not Set	can only be set using software available from	
ER_CMD#C4	Channel 4	433.68 MHz	Not Set	LPRS.	
ER_CMD#C5	Channel 5	433.83 MHz	Not Set		
ER_CMD#C6	Channel 6	433.88 MHz	Not Set		
ER_CMD#C7	Channel 7	434.00 MHz	Not Set		
ER_CMD#C8	Channel 8	434.15 MHz	Not Set		
ER_CMD#C9	Channel 9	434.35 MHz	Not Set		
ER_CMD#C?	Get Channel Value			The module replies echos with the power value. Eg: ER_CMD#C9 No ACK is required.	
ER_CMD#C:	TS ONLY Set Frequency Bank 1			: = colon	
ER_CMD#C;	TS ONLY Set Frequency Bank 2			; = semi-colon	
	MISCELLA	NEOUS COI	MMANDS		
ER_CMD#R1	Reset to Default Settings	U4, P9, C7	U4, P9, C0	Factory Default	
	TI	EST MODES			
ER_CMD#T0	Upper FSK Carrier			Test Mode 0	
ER_CMD#T1	Modulated Carrier			Test Mode 1	
ER_CMD#T2	Lower FSK Carrier			Test Mode 2	
ER_CMD#T3	Get Firmware			Returns Firmware	
	Revision			String: eg	
				ER400TRS-02V2.01.5	
ER_CMD#T4	RAW Data Test			Out of CTS pin	

To successfully send a command do the following:

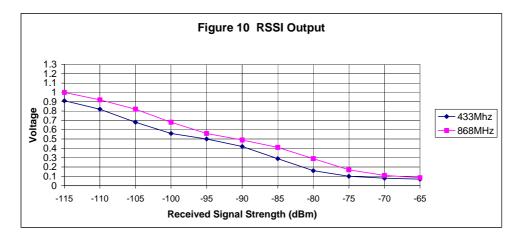
- Send Command from host: 1) e.g. ER_CMD#U5
- 2) In the case of a TRS/RS:
 - Wait for echo of command from module. e.g. ER_CMD#U5 0 In the case of a TS: Wait 20mS 0
- 3) Send the ASCII string from the host: ACK

The commands should be sent exactly as shown (case sensitive) with no spaces between characters. The ACK command is sent as three ASCII characters, ACK in sequence. 'A"C"K' .

Note that the TS (transmitter) devices send data 'over air' as they are not equipped with a serial data out or handshake pins. This takes approximately 20mS and time should be taken in to account before sending the 'ACK' sequence

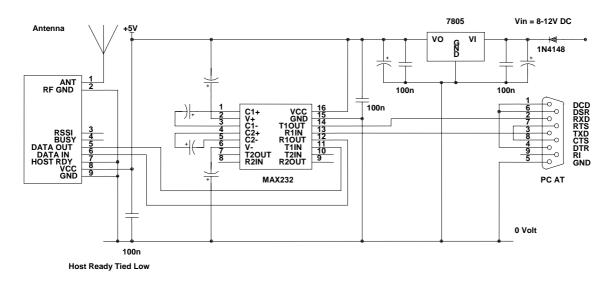
"FAST ACK"

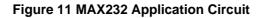
In this mode the procedure to update settings is made much faster. In response to an ER_CMD#x string the TRS/RS module will reply with a single HEX 6 (0x06) which is the ASCII ACK value. The host will then issue the same single byte 0x06 in replacement of the Txt version of "ACK".


ERx00-02 Series V2.2	Datasheet Revision 2.2 12thMarch 2005	Copyright LPRS 2005.	Page 14 of 18

(Set UART BAUD to 38400)

Notes:


RSSI Output


The Receiver/Transceiver has a built in RSSI (Received Signal Strength Indicator) that provides an analogue output voltage that is inversely proportional to the RF energy present within the pass band of the receiver. It ranges from 0 Volt (maximum signal, –65dBm) to 1.2 Volts (minimum signal, -115bBm) and has a slope of approximately 50dB/Volt. This analogue output signal should only be connected to a high impedance load (>100k Ohms) and can be used to provide a measure of the signal strength and any interfering signals (noise) within band during the installation and operation of systems.

Application Notes

MAX232 Application

Compatibility

The ERx00TS, ERx00RS & ERx00TRS use crystal controlled synthesisers to accurately define transmit and receive frequencies incorporating RS232 protocols, and so should not be used in connection with Non-Easy Radio RF modules unless the firmware allows.

PCB Layout

The Ground (0 Volt) pins of the receiver should be connected to a substantial ground plane (large area of PCB copper) connected to 0 Volt. It is suggested that a double sided PCB be used with one layer being the ground plane.

Power Supply

The supply used to power the receiver should be 'clean' and free from ripple and noise (<20mV p-p total). It is suggested that 100nF ceramic capacitors be used to de-couple the supply close to the power pins of the receiver. The use of 'switch mode' power supplies should be avoided as they can generate both conducted and radiated high frequency noise that can be very difficult to eliminate. This noise may considerably reduce the performance of any radio device that is connected or adjacent to the supply.

Antennas

The receiver can be used with the various common types of antenna that match the 50 Ohm RF Input/Output such as a monopole (whip), helical or PCB/Wire loop antennas.

Monopole antennas are resonant with a length corresponding to one quarter of the electrical wavelength $(\lambda/4)$. They are very easy to implement and can simply be a 'piece of wire' or PCB track which at 434MHz should be 16.4 cms in length. This should be straight, in 'free space' (kept well away from all other circuitry) and should be connected directly to the Antenna pin of the receiver. If the antenna is remote it should be connected via a 50 Ohm coaxial feeder cable or transmission line. A 50 Ohm transmission line can be constructed on FR4 board material by using a 3mm wide PCB track over a ground plane. This should be kept as short as possible.

Helical antennas are also resonant and generally chosen for their more compact dimensions. They are more difficult to optimise than monopole antennas and are critical with regard to surrounding objects that can easily 'de-tune' them. They operate most efficiently when there is a substantial ground plane for them to radiate against.

Wire or PCB Loop antennas are the most compact antennas but are less effective than the other types. They are also more difficult to design and must be carefully 'tuned' for best performance.

The Internet can provide much useful information on the design of Short Range Device (SRD) Antennas.

Product Order Codes

Name	Description	Order Code
Easy-Radio 400 Transmitter	UK/European Transmitter Module on 433 MHz	ER400TS-02
Easy-Radio 400 Receiver	UK/European Receiver Module on 433 MHz	ER400RS-02
Easy-Radio 400 Transceiver	UK/European Transceiver Module on 433 MHz	ER400TRS-02
Easy-Radio 900 Transmitter	Europe/US Transmitter Module 869/915MHZ	ER900TS-02
Easy-Radio 900 Receiver	Europe/US Receiver Module 869/915MHZ	ER900RS-02
Easy-Radio 900 Transceiver	Europe/US Transceiver Module 869/915MHZ	ER900TRS-02

Please contact the sales office for availability and other variants of the standard product. The software interface can be customised to specific requirements for high volume applications.

Easy-Radio Module Firmware Version

Version	Date	Revision	Known Issues
2.01.5	March	Fixed 2.01.4 Issue	None at time of print
	2005	Added Default Power settings using	
		lowercase 'p' (See Command Table)	
2.01.4	Feb	Fixed RSSI. (Previous Releases did not	ER_CMD#R1 Reset to defaults sets
	2005	work correctly)	UART/POWER/CHANNEL all to 0
2.01.3	Jan	Initial Release	
	2005		

Document History

Issue	Date	Revision
2.2	March 2005	Removed Provisional status. Updated commands & feature lists.
2.1	Feb 2005	First Provisional Datasheet for '02' series modules

Copyright

The information contained in this data sheet is the property of Low Power Radio Solutions Ltd and copyright is vested in them with all rights reserved. Under copyright law this documentation may not be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine readable form in whole or in part without the written consent of Low Power Radio Solutions Ltd.

The circuitry and design of the modules are also protected by copyright law.

Disclaimer

Low Power Radio Solutions Ltd has an on going policy to improve the performance and reliability of their products; we therefore reserve the right to make changes without notice. The information contained in this data sheet is believed to be accurate however we do not assume any responsibility for errors or any liability arising from the application or use of any product or circuit described herein. This data sheet neither states nor implies warranty of any kind, including fitness for any particular application.

Any liability from defect or malfunction is limited to the replacement of product ONLY, and does not include labour or other incurred corrective expenses.

By using these devices the user by default is bound by these terms.

For further information or technical assistance please contact:

Tel: Fax: Web: Email:

+44 (0)1993 709418 +44 (0)1993 708575 <u>http://www.lprs.co.uk</u> info@lprs.co.uk Low Power Radio Solutions Ltd Two Rivers Industrial Estate Station Lane Witney Oxon OX28 4BH England

Web:

http://www.easy-radio.co.uk

The above address is a dedicated web site for Easy-Radio

